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We will study entangled two-photon states generated from a two-mode supersymmetric
model and quantify degree of entanglement in terms of the entropy of entanglement.
The influences of the nonlinearity on the degree of entanglement is also examined, and
it is shown that amount of entanglement increase with increasing the nonlinear coupling
constant.
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1. INTRODUCTION

Perhaps, quantum entanglement is the most nonclassical features of quantum
mechanics which has recently attracted much attention although it was discov-
ered many decades ago by Einstein, Podolsky, and Rosen (1935) and SchrÖdinger
(1935). It plays a central role in quantum information theory and provides potential
resources for communication and information processing (Bennett and Wiesner,
1992; Bennett et al., 1993; Bennett et al., 1996). By definition, a pure quantum
state of two or more subsystems is said to be entangled if it is not a product of
states of each components. A lot of works have been devoted to the preparation and
measurement of entangled states. Moreover the possibility for generation of the
entangled states with a fixed photon number has been theoretically studied (Duan
et al., 2000a,b; Cochrane et al., 2000; Liu et al., 2004). Duan et al., described an
entanglement purification protocol which generates maximally entangled states
with fixed photon number from squeezed vacuum states or from mixed Gaus-
sian continuous states by the quantum nondemolition measurement (Duan et al.,
2000a,b). Quantum teleportation using an entangled source of fixed photon num-
ber has also been theoretically investigated in (Cochrane, 2000). Liu et al., are used
a system of two coupled microcrytallites as a source with fixed exciton number and
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quantified entanglement of the excitonic states (Liu et al., 2004). Therefore, the
generation of a new entangled source with fixed photon number is an interesting
task both from experimental and theoretical viewpoints.

In this contribution, it is shown that a two-mode field with a two-photon
interaction can be used as a good source for generation of entangled states with
fixed photon number. We will study entangled states generated from two degen-
erate bosonic systems with fixed photon number, and we concern on quadratic
nonlinearity between modes to use Higgs algebra as the spectrum generating al-
gebra of the corresponding Hamiltonian (Debergh, 1998; Beckers, 1999). We also
restrict ourselves to the case that total number of photons is odd. For this case,
Debergh in (Debergh, 1998) have shown that the corresponding Hamiltonian is
supersymmetric (Witten, 1981).

A number of entanglement measures have been discussed in the literature,
such as the von Neumann reduced entropy, the relative entropy of entanglement
(Plenio and Vdral, 1998) and the so called entanglement of formation (Bennett
et al., 1996). In order to discus entanglement of the states, we use von Neumann
reduced entropy which has widely been accepted as an entanglement measure for
pure bipartite states.

The organization of the paper is as follows. In Section 2 we introduce a
quantum optics model for two bosonic system with supersymmetric feature. An
analytial solution of the Hamiltonian is also given by following the method of
(Debergh, 1998). In Section 3, the analytical results of Section 2 are employed to
generate entangled two-photon states with fixed photon number. Some examples
are also considered in Section 3. The paper is concluded in Section 4 with a brief
conclusion.

2. THE TWO-MODE SUPERSYMMETRIC HAMILTONIAN

In this section, we shall introduce and analyse a model for nonlinear in-
teraction between two-mode field. Our method is based on the analysis given
by (Debergh, 1998). Let us consider the following family of Karrassiov–Klimov
Hamiltonian (Karassiov and Klimov, 1994) which describes multi-photon process
of scattering, i.e.,

H = ω1a
†
1a1 + ω2a

†
2a2 + g(a†

1 )sar
2 + g∗as

1(a†
2 )r (1)

where 0 ≤ r ≤ s, g is coupling constant and ωi (i = 1, 2) refer to angular fre-
quencies of two-mode field characterized by annihilation and creation operators
ai , a

†
i respectively, satisfying [ai, a

†
j ] = δij . Hamiltonian (1) can be rewritten as

H = (ω1 + ω2)R0 + (sω1 − rω2)J0 + gJ+ + g∗J−, (2)
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where (Beckers et al., 1999)

R0 ≡ 1

r + s
(ra†

1a1 + sa
†
2a2), (3)

and

J0 ≡ 1

r + s
(a†

1a1 − a
†
2a2), J+ ≡ (a†

1 )sar
2, J− ≡ as

1(a†
2 )r . (4)

It can be easily shown that

[R0, J0] = [R0, J±] = 0, (5)

and

[J0, J±] = ±J±, (6)

for arbitrary values of r and s.
It is obvious that R0 is a constant of motion, and the total photon num-

ber of the two-mode system is conserved. Moreover, the infinite dimensional
vectors {|n1, n2〉 = (a†

1 )n1 (a†
2 )n2√

n1!n2!
|0, 0〉, n1, n2 = 0, 1, 2, · · ·} are eigenvectors of R0

with corresponding eigenvalues j = rn1+sn2
r+s

. Debergh (1998) has shown that in
order to have Higgs algebra as the spectrum generating algebra of the Hamiltonian
(2), we have to add to (6) the following requirement

[J+, J−] = 2J0 + 8βJ 3
0 , (7)

and have shown that (Debergh, 1998; Beckers, 1999) this is possible only for
r = s = 2, with parameter β given by

β = − 4

4j 2 + 4j − 2
, j = 0,

1

2
, 1, . . . . (8)

These values of β lead to the relations (Debergh, 1997)

J3|j,m〉 = m

2
|j,m〉, (9)

J±|j,m〉 =
√

(j ∓ m)(j ± m + 1)(j ∓ m − 1)(j ± m + 2)|j,m ± 2〉, (10)

for m = −j,−j + 1 · · · ,+j . For a fixed total photon number N , the vectors
|j,m〉 are related to the two-mode Fock states by

|j,m〉 = |m1〉A|m2〉B = (a†
1 )j+m(a†

2 )j−m

√
(j + m)!(j − m)!

|0〉A|0〉B, (11)

where |m1〉A ⊗ |m2〉B represent Fock state with m1 = j + m photons in mode A
and m2 = j − m photons in mode B.

In order to have more symmetry in Hamiltonian (2), let us suppose that
ω1 = ω2 = ω, and concern on the case that g is real. In this case, Hamiltonian (1)
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reduce to

H = ω
(
a
†
1a1 + a

†
2a2

) + g
((

a
†
1

)2
a2

2 + a2
1

(
a
†
2

)2)
= 2ωR0 + g (J+ + J−) .

(12)

Now, by expanding eigenvectors of (12) as |ψk〉 = ∑m=j

m=−j C(k)
m |j,m〉 and using

eigenvalue equation H |ψk〉 = Ek|ψk〉, we get

EkC
(k)
m = 2jωC(k)

m + gC
(k)
m−2

√
(j + m)(j + m − 1)(j − m + 1)(j − m + 2)

+ gC
(k)
m+2

√
(j − m)(j − m − 1)(j + m + 1)(j + m + 2). (13)

Moreover in order to have supersymmetric Hamiltonian, Debergh concerned on the
case that j is a half-integer, which leads to two fold degeneracy of all eigenenergies
as

Ek = 2ωj + gλk, k = 1, 2, · · · , j + 1

2
, (14)

where λk is anyone of the j + 1
2 different solutions of (Debergh, 1998)

[F (Ak, j, λ)]2 ≡

λj+ 1

2 −
j− 1

2∑
k=1

A2
kλ

j− 3
2 +




j− 1
2∑

k<l, |k−l|	=2

A2
kA

2
l − A2

j− 3
2
A2

j− 1
2


 λj− 7

2

−



j− 1
2∑

k<l<p, |k−l|	=2, |k−p|	=2, |l−p|	=2

A2
kA

2
l A

2
p −

j− 9
2∑

k=1

A2
kA

2
j− 3

2
A2

j− 1
2


 λj− 11

2 · · ·



2

,

(15)

where Ak are defined by

Ak = (k(k + 1)(2j − k)(2j − k + 1))
1
2 , k = 1, 2, · · · , j − 1

2
. (16)

Let us denote two eigenvectors of H corresponding to twofold degenerate eigen-
value Ek with |ψ (1)

k 〉 and |ψ (2)
k 〉. Now, since (13) relates coefficient C(k)

m to C
(k)
m+2 and

C
(k)
m−2, we can, without los of generality, write these two orthonormal eigenvectors

belonging to eigensubspace εk as

∣∣ψ (1)
k

〉 =
j− 1

2∑
n=0

C
(k)
j−2n|j, j − 2n〉, C

(k)
j−2n = b

(k)
j−2n√∑j− 1
2

n=0

(
b

(k)
j−2n

)2
,

(17)∣∣ψ (2)
k

〉 =
j− 1

2∑
n=0

C
(k)
j−2n−1|j, j − 2n − 1〉, C

(k)
j−2n−1 = b

(k)
j−2n−1√∑j− 1
2

n=0

(
b

(k)
j−2n−1

)2
,
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where

b
(k)
j = 1, b

(k)
j−2n = F (A2p−1, n − 1

2 , λk)

A1A3 · · · A2n−1
, n = 1, . . . , j − 1

2
,

b
(k)
j−1 = 1, b

(k)
j−2n−1 = F (A2p, n − 1

2 , λk)

A2A4 · · · A2n

, n = 1, · · · , j − 1

2
,

(18)

where function F has been defined in (15). In two-mode Fock space representation,
(17) can be written as

∣∣ψ (1)
k

〉 =
2j−1

2∑
n=0

C
(k)
j−2n|2j − 2n〉A|2n〉B,

(19)∣∣ψ (2)
k

〉 =
2j−1

2∑
n=0

C
(k)
j−2n|2j − 2n − 1〉A|2n + 1〉B.

Finally, evolution operator U (t) takes the following form

U (t) =
j+ 1

2∑
k=1

e−iEkt
(∣∣ψ (1)

k

〉〈
ψ

(1)
k

∣∣ + ∣∣ψ (2)
k

〉〈
ψ

(2)
k

∣∣). (20)

3. TWO-PHOTON ENTANGLEMENT

In this section, we will study entangled states generated by Hamiltonian (12).
The entanglement measure that we are going to use is, the so called von Neumann
entropy of reduced density matrix, which has most widely been accepted as an
entanglement measure of pure state of a bipartite system. Let |ψ〉 be a pure state
of a bipartite system with state space HA ⊗ HB . Entanglement of |ψ〉 is defined
by

E(|ψ〉) = −Tr(ρAlnρA) = −Tr(ρB lnρB) =
∑

n

λ2
nlnλ2

n, (21)

where ρA is reduced density matrix of subsystem A which is obtained by tracing
out subsystem B, i.e., ρA = TrB(|ψ〉〈ψ |), ρB is defined similarly, and λn are square
root of nonzero eigenvalues of ρA and ρB . They are also Schmidt number of state
|ψ〉, i.e.,

|ψ〉 =
∑

n

λn|un〉A|vn〉B, (22)

where {|un〉} and {|vn〉} are orthonormal states of two subsystems A and B, re-
spectively. The definition is based on the fact that although entropy of a pure state
is zero, but von Neumann entropy of each subsystem is zero only when the state
|ψ〉 is a product state.
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In this paper, we shall consider the case that the total number of photons in
the whole system is fixed by the initial condition N = 2j , and system is initially
in product state

|ψ(0)〉 = |N − L〉A|L〉B, (23)

which represents initially N − L photons in mode A and L photons in mode B.
By taking account of (19), (20), (23), we obtain, up to an overall phase factor eiNω,
the final state of the system by

|ψ (N−L,L)(t)〉 =
N−1

2∑
n=0

an|N − 2n − �L〉A|2n + �L〉B, (24)

where coefficients an are defined by

an =
N+1

2∑
k=1

e−iλk t C
(k)
N
2 −L

C
(k)
N
2 −2n−�L

, (25)

and �L is difined such that it is zero (one) when L is an even (odd) integer. Obvi-
ously, (24) represents final state of the system in Schmidt form and, accordingly,
the von Neumann entropy of the reduced density matrix can be obtained easily by

E(N−L,L)(t) = −
j− 1

2∑
n=0

|an|2ln|an|2. (26)

Finally, it should be stressed that according to (26) maximal entangled state of a
system with the total photon number N is

∣∣ψ (N)
MAX

〉 = 1√
N + 1

N∑
n=0

|N − n〉A|n〉B, (27)

where in this case entropy of entanglement is equal to E
(N)
MAX = ln(N + 1). On the

other hand, for state given by (24), maximum entropy of entanglement is obtained

when an =
√

2
N+1 , i.e.,

∣∣ψ (N−L,L)
MAX

〉 =
√

2

N + 1

N−1
2∑

n=0

|N − 2n − �L〉A|2n + �L〉B, (28)

where we find E
(N−L,L)
MAX = ln(N+1

2 ). This means that for a system with fixed photon
number N , maximum entanglement that can be achieved from Hamiltonian (12)
is less than maximum entanglement that can be obtained from a system that linear
interaction between modes is also considered. The difference between these two
maximum is, of course, constant and equal to ln2.



Two-Photon Entanglement in a Two-Mode Supersymmetric Model 1011

In the rest of this section, we will consider some examples in N = 1, 3, 5, 9
and discuss results.

1. j = 1
2 . In this case, the total number of photons of system is 1, and because

of the two fold degeneracy of eigenvalues, the whole state space of system
coincide with eigensubspace of the only eigenvalue. Accordingly the final
state |ψ(t)〉 differs with initial product state only in a total phase factor,
therefore, we cannot have entanglement.

2. j = 3
2 . In this case, the state space of system decomposes into two eigen-

subspces, with eigenvalues

E1 = 3ω +
√

12g E2 = 3ω −
√

12g. (29)

By starting with two initial states |ψ(0)〉 = |3〉A|0〉B and |ψ(0)〉 =
|2〉A|1〉B we obtain, respectively

|ψ (3,0)(t)〉 = cos (
√

12gt)|3〉A|0〉B − i sin (
√

12gt)|1〉A|2〉B, (30)

|ψ (2,1)(t)〉 = cos (
√

12gt)|2〉A|1〉B − i sin (
√

12gt)|0〉A|3〉B. (31)

By using (26), we obtain same value for entanglement of the above two
states as

E(3,0)(t) = E(2,1)(t) = − cos2 (
√

12gt) ln(cos2 (
√

12gt))

− sin2 (
√

12gt) ln(sin2 (
√

12gt)). (32)

Equation (32) shows that entanglement has zero value when t = kπ
2g

(for

k = 0, 1, . . .) and it takes maximum value ln2 at times t = (2k+1)π
4g

(for
k = 0, 1, . . .). This, obviously, shows that the survival time of maxi-
mum entanglement decrease with increasing of the nonlinear coupling
constant g.

3. j = 5
2 . This case corresponds with a system that has five photons and the

state space of system decomposes into three eigensubspces, with eigen-
values

E1 = 5ω E2 = 5ω + 4
√

7g E3 = 5ω − 4
√

7g. (33)

In this case, by considering the initial state as anyone of |ψ(0)〉 = |5〉A|0〉B ,
|ψ(0)〉 = |4〉A|1〉B and |ψ(0)〉 = |3〉A|2〉B , we find, respectively, the final
state of the system as∣∣ψ (5,0)(t)

〉 = 1

14

(
9 + 5 cos (4

√
7gt)

)
|5〉A|0〉B

−i

√
5

14
sin (4

√
7gt)|3〉A|2〉B (34)

+ 3
√

5

14

(
−1 + cos (4

√
7gt)

)
|1〉A|4〉B,
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|ψ (4,1)(t)〉 = 1

14

(
5 + 9 cos (4

√
7gt)

)
|4〉A|1〉B

− i
3√
14

sin (4
√

7gt)|2〉A|3〉B (35)

+ 3
√

5

14

(
−1 + cos (4

√
7gt)

)
|0〉A|5〉B,

|ψ (3,2)(t)〉 = −i

√
5

14
sin (4

√
7gt)|5〉A|0〉B

+ cos (4
√

7gt)|3〉A|2〉B (36)

− i
3√
14

sin (4
√

7gt)|1〉A|4〉B.

Fig. 1 demonstrates the evolution of the entropy of entanglement as a
function of gt for three different initial states with different nonlinear
coupling constant g. The figure is plotted such that the top horizontal line of
each curve corresponds to the maximum entanglement ln3. The maximum
entanglement that can be obtained by system is different for different initial
state and the system can reach, approximately, to maximum entanglement
ln3 only in the case, that the initial state is |ψ(0)〉 = |5〉A|0〉B . The Fig. 1
also shows that the survival time of maximum entanglement decrease
when the difference between photon numbers of two modes A and B of
the initial state is decreased. As the horizontal axis of the curves is product
of coupling constant g and time t , it is obvious that by increasing the
nonlinear constant g, survival time of maximum entanglement decreases.
Equations (34), (35) and (36) show that if the nonlinear coupling constant
g is equal to zero, then |ψ(t)〉 = |ψ(0)〉, i.e., we cannot have entangled
state.

4. j = 9
2 . Finally we consider as the last example the system with nine

photons and accordingly the state space of system decomposes into five
eigensubspces, with eigenvalues

E1 = 9ω

E2 = 9ω +
√

792 + 24
√

561g E3 = 9ω +
√

792 − 24
√

561g (37)

E4 = 9ω −
√

792 + 24
√

561g E5 = 9ω −
√

792 − 24
√

561g.

The evolution of the entropy of entanglement as a function of gt

for four different initial states |ψ(0)〉 = |9〉A|0〉B , |ψ(0)〉 = |8〉A|1〉B ,
|ψ(0)〉 = |6〉A|3〉B and |ψ(0)〉 = |5〉A|4〉B is demonstrated in Fig. 2. The
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Fig. 1. E(5,0), E(4,1) and E(3,2) are plotted as a function of gt in interval [0, 2] (curves (a), (c) and
(e)) and in interval [0, 22.015] (curves (b), (d) and (f )).

maximum entanglement that can be obtained by system is different for
different initial states (the top horizontal line of each curve corresponds
to the maximum entanglement ln5). We find that the maximum entan-
glement ln5 is obtained, approximately, only in the case, that there are
nine photons initially in one of the modes (for example mode A), i.e.,
|ψ(0)〉 = |9〉A|0〉B . The survival time of the maximum entanglement de-
crease by increasing the nonlinear constant g and it is also decrease by
decreasing the difference between photon number of two modes A and B
of the initial state.
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Fig. 2. E(9,0), E(8,1), E(6,3) and E(5,4) are plotted as a function of gt (curves (a), (b), (c) and (d)).

4. CONCLUSION

We studied entangled states generated from two-mode supersymmetric model
with fixed photon number. We found that only in the case, that system has N = 3
photons, the maximum entanglement can be obtained exactly. For other systems
with total photon number greater than three, we found that the maximum entangle-
ment is obtained, approximately, only in the case, that all photons are initially in
one of the modes, i.e., |ψ(0)〉 = |N〉A|0〉B or |ψ(0)〉 = |0〉A|N〉B . The influences
of the nonlinearity on the degree of entanglement is also examined, and is shown
that survival time of maximum entanglement decrease by increasing the nonlinear
coupling constant g. It is also shown that the survival time of maximum entangle-
ment decreases when the difference between photon number of two modes A and
B of the initial state is decreased.
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Bennett, C. H. Brassard, G. Crépeau, C., jozsa, R., Peres A., and Wootters, W. K. (1993). Physical

Review Letters 70, 1895.
Bennett, C. H., DiVincenzo, D. P., Smolin J. A., and Wootters, W. K. (1996). Physical Review Letters

A 54, 3824.
Beckers, J., Brihaye Y., and Debergh, N. (1999). Journal of Physics A: Mathematical and General.

32, 2791.
Cochrane, P. T., Milburn G. J., and Munro W. J. (2000). Physical Review A 62, 062307.
Debergh, N. (1997). Journal of Physics A: Mathematical and General. 30, 5239.
Debergh, N. (1998). Journal of Physics A: Mathematical and General. 31, 4013.
Duan, L. M., Giedke, G., Cirac J. I., and Zoller P. (2000). Physical Review Letters 84, 4002.
Duan, L. M., Giedke, G., Cirac J. I., and Zoller P. (2000). Physical Review A 62, 032304.
Einstein, A., Podolsky, B., and Rosen, N. (1935). Physical Review 47, 777.
Karassiov, V. P. and Klimov, A. B. (1994). Physics Letters A 189, 43.
Liu, Y-X, Özdemir, S. K., Miranowicz, A., Koashi M., and Imoto N. (2004). Journal of Physics A:

Mathematical and General. 37, 4423.
Plenio, M. B. and Vedral, V. (1998). Physical Review A 57, 1619.
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